题目内容
计算:﹣4+(﹣5)=________
在一次数学实践探究活动中,大家遇到了这样的问题:
如图,在一个圆柱体形状的包装盒的底部A处有一只壁虎,在顶部B处有一只小昆虫,壁虎沿着什么路线爬行,才能以最短的路线接近小昆虫?
楠楠同学设计的方案是壁虎沿着A﹣C﹣B爬行;
浩浩同学设计的方案是将包装盒展开,在侧面展开图上连接AB,然后壁虎在包装盒的表面上沿着AB爬行.
在这两位同学的设计中,哪位同学的设计是最短路线呢?他们的理论依据是什么?( )
A. 楠楠同学正确,他的理论依据是“直线段最短”
B. 浩浩同学正确,他的理论依据是“两点确定一条直线”
C. 楠楠同学正确,他的理论依据是“垂线段最短”
D. 浩浩同学正确,他的理论依据是“两点之间,线段最短”
当m=______时,函数y=(2m﹣1)x3m﹣2是正比例函数.
先化简,再求值:3x(x﹣2y)﹣[3x2﹣2y+2(xy+y)],其中x=﹣,y=﹣3.
比较大小:﹣π________﹣3.14; ________.
若x=1是关于x的方程ax+1=2的解,则a是( )
A. 1 B. 2 C. -1 D. -2
如图,在平面直角坐标系中,Rt△ABC的三个顶点分别是A(-3,1),B(0,3),C(0,1).
(1)将△ABC以点C为旋转中心旋转180°,画出旋转后对应的△A1B1C;
(2)分别连接AB1,BA1后,求四边形AB1A1B的面积.
如图,AB是⊙O的切线,B为切点,AO与⊙O交于点C,若∠BAO=30°,则∠OCB的度数为( )
A. 30° B. 60° C. 50° D. 40°
已知:y=y1+y2,y1与x2成正比例,y2与x成反比例,且x=1时,y=3;x=﹣1时,y=1.求x=﹣时,y的值.