题目内容
下列图形中由AB∥CD能得到∠1=∠2的是( )
A. B.
C. D.
如图,⊙O的半径为2,点O到直线l的距离为3,点P是直线l上的一个动点,PQ切⊙O于点Q,则PQ的最小值为( )
A. B. C. 3 D. 2
如图1,AB∥CD,EOF是直线AB、CD间的一条折线.
(1)说明:∠O=∠BEO+∠DFO.
(2)如果将折一次改为折二次,如图-2,则∠BEO、∠O、∠P、∠PFC会满足怎样的关系,证明你的结论.
如图,点A表示小雨家,点B表示小樱家,点C表示小丽家,她们三家恰好组成一个直角三角形,其中AC⊥BC,AC=900米,BC=1200米,AB=1500米.
(1)试说出小雨家到街道BC的距离以及小樱家到街道AC的距离.
(2)画出表示小丽家到街道AB距离的线段.
如图,已知CD平分∠ACB,DE∥AC,∠1=20°,则∠2=________°.
如图,已知直线a,b被直线c所截,a∥b,∠1=60°,则∠2的度数为( )
A. 30° B. 60° C. 120° D. 150°
某校为美化校园,计划对面积为1800m2的区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天.
(1)求甲、乙两工程队每天能完成绿化的面积分别是多少m2?
(2)若学校每天需付给甲队的绿化费用为0.4万元,乙队为0.25万元,要使这次的绿化总费用不超过8万元,至少应安排甲队工作多少天?
已知一个等腰三角形两内角的度数之比为1:4,则这个等腰三角形顶角的度数为( )
A. 20°或100° B. 120° C. 20°或120° D. 36°
将x=代入反比例函数y=﹣中,所得函数记为y1,又将x=y1+1代入函数中,所得函数记为y2,再持x=y2+1代入函数中,所得函数记为y3,如此继续下去,则y2009值为( )
A. 2 B. - C. D.