题目内容
12.| A. | 180° | B. | 360° | C. | 540° | D. | 720° |
分析 根据三角形的外角性质得出∠BMQ+∠DQF+∠FNM=∠A+∠+∠C+∠D+∠E+∠F,代入∠BMQ+∠DQF+∠FNM=360°求出即可.
解答
解:∵∠BMQ=∠A+∠B,∠DQF=∠C+∠D,∠FNM=∠E+∠F,
∴∠BMQ+∠DQF+∠FNM=∠A+∠+∠C+∠D+∠E+∠F,
∵∠BMQ+∠DQF+∠FNM=360°,
∴∠A+∠B+∠C+∠D+∠E+∠F=360°,
故选B.
点评 本题考查了三角形的外角和定理,三角形的外角性质的应用,主要考查学生运用定理进行推理的能力,注意:三角形的一个外角等于和它不相邻的两个内角的和,三角形的外角和等于360°.
练习册系列答案
相关题目
2.探索规律:
如图,一个圆形纸片,需经过多次裁剪,把它裁剪成若干个扇形面,操作过程如下:
第一次裁剪,将圆形指板等份为4个扇形,第二次裁剪,将上次得到的扇形面中的一个再分成4个扇形,以后按第二次裁剪的作法进行下去.
(1)请你通过操作和猜想,将第3、第4和第n次裁剪后所得扇形的总数S填入下表:
(2)请你推断,能不能按上属操作过程,将原来的圆形指板剪成50个扇形?为什么?
如图,一个圆形纸片,需经过多次裁剪,把它裁剪成若干个扇形面,操作过程如下:
第一次裁剪,将圆形指板等份为4个扇形,第二次裁剪,将上次得到的扇形面中的一个再分成4个扇形,以后按第二次裁剪的作法进行下去.
(1)请你通过操作和猜想,将第3、第4和第n次裁剪后所得扇形的总数S填入下表:
| 等份圆及扇形面的次数n | 1 | 2 | 3 | 4 | … | n |
| 所得扇形的总个数S | 4 | 7 | 10 | 13 | … | 3n+1 |