题目内容
观察如下算式:
=
-
=1-
=
=
-
=
-
=
=
-
=
×(1-
)=
…
试计算:
(1)1+
+
+
…+
(2)
+
+
+
.
| 1 |
| 1×2 |
| 1 |
| 1 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2×3 |
| 1 |
| 2 |
| 1 |
| 3 |
| 3 |
| 6 |
| 2 |
| 6 |
| 1 |
| 6 |
| 1 |
| 1×3 |
| 1 |
| 1 |
| 2 |
| 3 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
试计算:
(1)1+
| 1 |
| 1×2 |
| 1 |
| 2×3 |
| 1 |
| 3×4 |
| 1 |
| 19×20 |
(2)
| 1 |
| 1×3 |
| 1 |
| 3×5 |
| 1 |
| 5×7 |
| 1 |
| 7×9 |
考点:规律型:数字的变化类
专题:
分析:由等式可以得出:
(1)根据分母是两个连续自然数的积,分子是1的分数可以拆成两个分子是1,分母是这两个自然数的分数的差即可;
(2)根据分母是两个连续奇数的积,分子是1的分数可以拆成两个分子是1,分母是这两个奇数的分数的差的
即可.
(1)根据分母是两个连续自然数的积,分子是1的分数可以拆成两个分子是1,分母是这两个自然数的分数的差即可;
(2)根据分母是两个连续奇数的积,分子是1的分数可以拆成两个分子是1,分母是这两个奇数的分数的差的
| 1 |
| 2 |
解答:解:(1)1+
+
+
…+
=1+1-
+
-
+
-
+…+
-
=2-
=1
;
(2)
+
+
+
=
×(1-
+
-
+
-
+
-
)
=
×
=
.
| 1 |
| 1×2 |
| 1 |
| 2×3 |
| 1 |
| 3×4 |
| 1 |
| 19×20 |
=1+1-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 19 |
| 1 |
| 20 |
=2-
| 1 |
| 20 |
=1
| 19 |
| 20 |
(2)
| 1 |
| 1×3 |
| 1 |
| 3×5 |
| 1 |
| 5×7 |
| 1 |
| 7×9 |
=
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| 5 |
| 1 |
| 7 |
| 1 |
| 7 |
| 1 |
| 9 |
=
| 1 |
| 2 |
| 8 |
| 9 |
=
| 4 |
| 9 |
点评:此题考查算式的变化规律,找出规律,利用规律解决问题.
练习册系列答案
相关题目
A、s2=
| ||||
| B、s2=s3 | ||||
C、s3=
| ||||
D、s4=
|