题目内容
19.| A. | (2,4) | B. | ($\frac{5}{2}$,4) | C. | (3,4) | D. | (2,5) |
分析 如图,作BM⊥x轴垂足为M,作AH⊥DH垂足为H,构建全等三角形△AHD≌△BCM,结合全等三角形的性质得到DH=CM=2,AH=BM=1,易求点A的坐标.
解答
解:如图,作BM⊥x轴垂足为M,作AH⊥DH垂足为H,
∵D的坐标是(0,3),线段AB=$\sqrt{10}$,
∴AB=CD=$\sqrt{10}$,OD=3,
∴OC=1.
又∵B的坐标是(3,1),
∴CM=2,BM=1.易证△AHD≌△BCM,
∴DH=CM=2,AH=BM=1,
∴A(2,4)
故选:A.
点评 本题考查了矩形的性质,坐标与图形性质,做题时,注意题中辅助线的作法.
练习册系列答案
相关题目
9.抛物线y=2x2向右平移1个单位,再向上平移5个单位,则平移后的抛物线的解析式为( )
| A. | y=2(x+1)2+5 | B. | y=2(x+1)2-5 | C. | y=2(x-1)2-5 | D. | y=2(x-1)2+5 |