题目内容
8.若等腰三角形的周长为26cm,一边为11cm,则另外两边为7.5cm,7.5cm或11cm,4cm.分析 题中给出了周长和一边长,而没有指明这边是否为腰长,则应该分两种情况进行分析求解.
解答 解:①当11cm为腰长时,则腰长为11cm,底边=26-11-11=4cm,因为11+4>11,所以能构成三角形;
②当11cm为底边时,则腰长=(26-11)÷2=7.5cm,因为7.5+7.5>11,所以能构成三角形.
故答案为:7.5cm,7.5cm或11cm,4cm
点评 此题主要考查等腰三角形的性质及三角形三边关系的综合运用,关键是利用三角形三边关系进行检验.
练习册系列答案
相关题目
19.某校研究性学习小组在学习二次根式$\sqrt{{a}^{2}}$=|a|之后,研究了如下四个问题,其中错误的是( )
| A. | 在a>1的条件下化简代数式a+$\sqrt{{a}^{2}-2a+1}$的结果为2a-1 | |
| B. | 当a+$\sqrt{{a}^{2}-2a+1}$的值恒为定值时,字母a的取值范围是a≤1 | |
| C. | a+$\sqrt{{a}^{2}-2a+1}$的值随a变化而变化,当a取某个数值时,上述代数式的值可以为$\frac{1}{2}$ | |
| D. | 若$\sqrt{{a}^{2}-2a+1}$=($\sqrt{a-1}$)2,则字母a必须满足a≥1 |