题目内容


如图A、B是⊙O上的两点,∠AOB=120°,C是弧的中点,求证四边形OACB是菱形.


【考点】垂径定理;等边三角形的判定与性质;菱形的判定;圆心角、弧、弦的关系.

【专题】证明题.

【分析】连OC,由C是的中点,∠AOB=l20°,根据在同圆或等圆中,相等的弧所对的圆心角相等得到∠AOC=∠BOC=60°,易得△OAC和△OBC都是等边三角形,则AC=OA=OB=BC,根据菱形的判定方法即可得到结论.

【解答】证明:连OC,如图,

∵C是的中点,∠AOB=l20°

∴∠AOC=∠BOC=60°,

又∵OA=OC=OB,

∴△OAC和△OBC都是等边三角形,

∴AC=OA=OB=BC,

∴四边形OACB是菱形.

【点评】本题考查了圆心角、弧、弦的关系:在同圆或等圆中,相等的弧所对的圆心角相等.也考查了等边三角形的判定与性质以及菱形的判定.

 


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网