题目内容
7.试说明:(10x+y)[10x+(10-y)]=100x(x+1)+y(10-y)为恒等式,并利用此恒等式计算1998×1992.分析 先将(10x+y)[10x+(10-y)]变形得到(10x+y)(10x-y)+10(10x+y),根据平方差公式和单项式乘多项式的计算法则展开,即可得到为恒等式,再把相应的值代入计算即可求解.
解答 解:(10x+y)[10x+(10-y)]
=(10x+y)(10x-y+10)
=(10x+y)(10x-y)+10(10x+y)
=100x2-y2+100x+10y
=100x(x+1)+y(10-y),
1998×1992
=(199×10+8)(199×10+2)
=100×199×(199+1)+8×(10-8),
=3980000+16
=3980016.
点评 考查了单项式乘多项式,恒等变形,本题关键是证明(10x+y)[10x+(10-y)]=100x(x+1)+y(10-y)为恒等式.
练习册系列答案
相关题目
19.某校积极推进“阳光体育活动”,本学期在九年级11个班中开展篮球单循环比赛(每个班与其他班级分别进行一场比赛,每班共要进行10场比赛),比赛规则规定每场比赛都要分出胜负,胜一场得3分,负一场得-1分,赛后有A,B,C,D四个班级得分情况如下表:
(1)根据以上信息,求A,B,C,D四个班级的平均分;
(2)若A班在所有的比赛中总得分为14分,则该班胜了几场?
(3)假设比赛结束后,E班得分比F,C两班得分之和的2倍还多2分,且E班获胜场数超过F,G两班获胜场数之和,请求出E班胜了几场?
| 参加班级 | A | B | C | D |
| 得分情况 | 14 | 18 | 10 | 6 |
(2)若A班在所有的比赛中总得分为14分,则该班胜了几场?
(3)假设比赛结束后,E班得分比F,C两班得分之和的2倍还多2分,且E班获胜场数超过F,G两班获胜场数之和,请求出E班胜了几场?
16.
如图,已知一次函数y=kx+b(k、b为常数,k≠0)的图象,当y>-2时,x的取值范围为( )
| A. | x<1 | B. | x>1 | C. | x<0 | D. | x>0 |