ÌâÄ¿ÄÚÈÝ

7£®Èçͼ1£¬Õý·½ÐÎABCDÖУ¬µãEÊÇAB±ßÉÏÒ»¶¯µã£¨µãEÓëµãB²»Öغϣ©£¬µãEµ½´ïµãAʱÔ˶¯Í£Ö¹£¬µãFÊÇÉäÏßBCÉÏÒ»µã£®ÇÒ¡ÏEFB=30¡ã£¬ÉèBE=x£¬¡÷BEFÓëÕý·½ÐÎABCDÖØµþ²¿·ÖµÄÃæ»ýΪS£¬S¹ØÓÚxµÄº¯ÊýͼÏóÈçͼ2Ëùʾ£¨ÆäÖÐ0£¼x¡Üm£¬m£¼x¡Ü3ʱ£®º¯ÊýµÄ½âÎöʽ²»Í¬£©£®
£¨1£©Ìî¿Õ£ºÕý·½ÐÎABCDµÄ±ß³¤Îª3£¬Í¼2ÖÐbµÄֵΪ$\frac{3}{2}\sqrt{3}$£»
£¨2£©ÇóS¹ØÓÚxµÄº¯Êý¹ØÏµÊ½£¬²¢Ð´³öxµÄȡֵ·¶Î§£®

·ÖÎö £¨1£©ÓÉͼ2¿ÉÖª£¬µ±x=BE=3ʱ£¬SÓÐ×î´óÖµ£¬´Ëʱ£¬µãEÓëµãAÖØºÏ£¬¾Ý´Ë¿ÉµÃÕý·½ÐÎABCDµÄ±ß³¤£¬ÓÉͼ2¿ÉÖª£¬µ±x=mʱ£¬µãFÓëµãCÖØºÏ£¬´Ëʱ£¬BF=BC=3£¬BE=tan30¡ã¡Á3=$\sqrt{3}$£¬¾Ý´Ë¿ÉµÃbµÄÖµ£»
£¨2£©·ÖÁ½ÖÖÇé¿ö£ºµ±0£¼x¡Ü$\sqrt{3}$ʱ£¬µãFÔÚÏß¶ÎBCÉÏ£¬´Ëʱ£¬¡÷BEFÓëÕý·½ÐÎABCDÖØµþ²¿·Ö¼´Îª¡÷BEF£»µ±$\sqrt{3}$£¼x¡Ü3ʱ£¬µãFÔÚBCµÄÑÓ³¤ÏßÉÏ£¬´Ëʱ£¬¡÷BEFÓëÕý·½ÐÎABCDÖØµþ²¿·ÖΪÌÝÐÎBCGE£¬¸ù¾Ý¡÷BEFÓëÕý·½ÐÎABCDÖØµþ²¿·ÖµÄÃæ»ýµÄ±íʾ·½·¨£¬¿ÉµÃS¹ØÓÚxµÄº¯Êý¹ØÏµÊ½£®

½â´ð ½â£º£¨1£©ÓÉͼ2¿ÉÖª£¬µ±x=BE=3ʱ£¬SÓÐ×î´óÖµ£¬
´Ëʱ£¬µãEÓëµãAÖØºÏ£¬¼´BE=BA=3£¬
¡àÕý·½ÐÎABCDµÄ±ß³¤Îª3£¬
ÓÉͼ2¿ÉÖª£¬µ±x=mʱ£¬µãFÓëµãCÖØºÏ£¬
´Ëʱ£¬BF=BC=3£¬BE=tan30¡ã¡Á3=$\sqrt{3}$£¬
¡àS¡÷BEF=$\frac{1}{2}$¡Á$\sqrt{3}$¡Á3=$\frac{3}{2}\sqrt{3}$£¬
¼´µ±m=$\sqrt{3}$ʱ£¬b=$\frac{3}{2}\sqrt{3}$£¬
¹Ê´ð°¸Îª£º3£¬$\frac{3}{2}\sqrt{3}$£»

£¨2£©Èçͼ1£¬µ±0£¼x¡Ü$\sqrt{3}$ʱ£¬µãFÔÚÏß¶ÎBCÉÏ£¬
´Ëʱ£¬¡÷BEFÓëÕý·½ÐÎABCDÖØµþ²¿·Ö¼´Îª¡÷BEF£¬
¡ßBE=x£¬¡ÏEFB=30¡ã£¬
¡àBF=$\sqrt{3}$x£¬
¡àS=$\frac{1}{2}$BE¡ÁBF=$\frac{1}{2}$¡Áx¡Á$\sqrt{3}$x=$\frac{\sqrt{3}}{2}{x}^{2}$£¨0£¼x¡Ü$\sqrt{3}$£©£¬
Èçͼ3£¬µ±$\sqrt{3}$£¼x¡Ü3ʱ£¬µãFÔÚBCµÄÑÓ³¤ÏßÉÏ£¬
´Ëʱ£¬¡÷BEFÓëÕý·½ÐÎABCDÖØµþ²¿·ÖΪÌÝÐÎBCGE£¬
¡ßBE=x£¬¡ÏEFB=30¡ã£¬BC=3£¬
¡àBF=$\sqrt{3}$x£¬CF=$\sqrt{3}$x-3£¬
¡àRt¡÷CFGÖУ¬CG=x-$\sqrt{3}$£¬
¡àS=$\frac{£¨CG+BE£©BC}{2}$=$\frac{1}{2}$£¨x-$\sqrt{3}$+x£©¡Á3=3x-$\frac{3}{2}\sqrt{3}$£¨$\sqrt{3}$£¼x¡Ü3£©£¬
×ÛÉÏËùÊö£¬S¹ØÓÚxµÄº¯Êý¹ØÏµÊ½ÎªS=$\left\{\begin{array}{l}{\frac{\sqrt{3}}{2}{x}^{2}£¨0£¼x¡Ü\sqrt{3}£©}\\{3x-\frac{3}{2}\sqrt{3}£¨\sqrt{3}£¼x¡Ü3£©}\end{array}\right.$£®

µãÆÀ ´ËÌâÖ÷Òª¿¼²éÁ˶¯µãÎÊÌâµÄº¯ÊýͼÏó£¬Í¨¹ý¿´Í¼»ñÈ¡ÐÅÏ¢£¬²»½ö¿ÉÒÔ½â¾öÉú»îÖеÄʵ¼ÊÎÊÌ⣬»¹¿ÉÒÔÌá¸ß·ÖÎöÎÊÌâ¡¢½â¾öÎÊÌâµÄÄÜÁ¦£®ÓÃͼÏó½â¾öÎÊÌâʱ£¬¹Ø¼üÊÇÒªÀíÇåͼÏóµÄº¬Òå¼´»áʶͼ£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø