题目内容
19.分析 已知△ABC与△DEF的两角相等,通过BE=CF可得BC=EF,即可判定△ABC≌△DEF(ASA),得到∠D=∠A=50°.
解答 证明:∵BE=CF,
∴BE+EC=EC+CF,
即BC=EF,
在△ABC和△DEF中,
$\left\{\begin{array}{l}{∠ACB=∠F}\\{BC=EF}\\{∠B=∠DEF}\end{array}\right.$,
∴△ABC≌△DEF(ASA),
∴∠D=∠A=50°.
点评 本题主要考查三角形全等的判定,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.
练习册系列答案
相关题目
10.求一个正数的算术平方根,有些数可以直接求得,如$\sqrt{4}$,有些数则不能直接求得,如$\sqrt{5}$,但可以通过计算器求.还有一种方法可以通过一组数的内在联系,运用规律求得,请同学们观察下表:
(1)表中所给的信息中,你能发现什么规律?(请将规律用文字表达出来)
(2)运用你发现的规律,探究下列问题:已知$\sqrt{2.06}$≈1.435,求下列各数的算术平方根:
①0.0206≈0.1435; ②20600≈143.5;
(3)根据上述探究过程类比研究一个数的立方根已知$\root{3}{2}$≈1.260,则$\root{3}{2000}$≈12.60.
| n | 16 | 0.16 | 0.0016 | 1600 | 16000 | … |
| $\sqrt{n}$ | 4 | 0.4 | 0.04 | 40 | 400 | … |
(2)运用你发现的规律,探究下列问题:已知$\sqrt{2.06}$≈1.435,求下列各数的算术平方根:
①0.0206≈0.1435; ②20600≈143.5;
(3)根据上述探究过程类比研究一个数的立方根已知$\root{3}{2}$≈1.260,则$\root{3}{2000}$≈12.60.
8.若实数m、n满足4m2+12m+n2-2n+10=0,则函数y=x2m+4n+n+2是( )
| A. | 正比例函数 | B. | 一次函数 | C. | 反比例函数 | D. | 二次函数 |