题目内容
据报载,2015年我国将发展固定宽带接入新用户25000000户,其中25000000用科学记数法表示为 .
(10分)如图,菱形ABCD,对角线AC、BD交于点O,DE//AC,CE//BD,求证:OE=BC.
如图,AB是⊙O直径,∠AOC=140°,则∠D=
(本题满分10分)如图,船A、B在东西方向的海岸线MN上,均收到已触礁搁浅的船P的求救信号,已知船P在船A的北偏东60°方向上,在船B的北偏西37°方向上,AP=30海里.
(1)求船P到海岸线MN的距离;
(2)若船A、船B分别以20海里/时、15海里/时的速度同时出发,匀速直线前往救援,试通过计算判断哪艘船先到达船P处.(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)
如图,在矩形ABCD中,AB=4,AD=2,以点A为圆心,AB长为半径画圆弧交边DC于点E,则阴影部分的面积是 (结果保留π).
如图,矩形ABCD的两条对角线相交于点O,∠AOD=60°,AD=2,则AC的长是( )
A、2 B、2 C、4 D、4
(本题满分12分)
知识迁移
当且时,因为≥,所以≥,从而≥(当时取等号).
记函数,由上述结论可知:当时,该函数有最小值为.
直接应用
已知函数与函数,则当 时,取得最小值为 .
变形应用
已知函数与函数,求的最小值,并指出取得该最小值时相应的的值.
实际应用
已知某汽车的一次运输成本包含以下三个部分:一是固定费用,共元;二是燃油费,每千米为元;三是折旧费,它与路程的平方成正比,比例系数为.设该汽车一次运输的路程为千米,求当为多少时,该汽车平均每千米的运输成本最低?最低是多少元?
直角三角形一条直角边和斜边的长分别是一元二次方程的两个实数根,该三角形的面积为 .
在边长为a的正方形中挖去一个边长为b的小正方形(a>b)(如图甲),把余下的部分拼成一个矩形(如图乙),由两个图形中阴影部分的面积相等,可以验证 (填写序号).
① ②
③ ④