题目内容

半径为R的圆中,垂直平分半径的弦长等于(  )
A、
3
2
R
B、
3
R
C、2
3
R
D、R
分析:根据题意画出图形,根据垂径定理可知AB⊥OD,OC=
R
2
,AC=BC,再在Rt△AOC中利用勾股定理即可求出AC的长,
解答:精英家教网解:如图所示:OA=R,AB⊥OD,OC=CD,
∵AB⊥OD,OC=CD,
∴AC=BC=
1
2
AB,
∴△AOC是直角三角形,
∴AC=
OA2-OC2
=
R2-(
R
2
)
2
=
3
R
2

∴AB=2AC=2×
3
R
2
=
3
R.
故选B.
点评:本题考查的是垂径定理及勾股定理,根据题意画出图形,利用数形结合求解是解答此题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网