题目内容
如图,△ADE∽△ABC,,△ABC的面积为18,求四边形BCED的面积.
如图,AB为⊙O直径,CD为⊙O的弦,∠ACD=25°,∠BAD的度数为 .
如图,在平面直角坐标系中,二次函数y=+bx+c的图象与x轴交于A、B两点,A点在原点的左则,B点的坐标为(3,0),与y轴交于C(0,﹣3)点,点P是直线BC下方的抛物线上一动点.
(1)求这个二次函数的表达式;
(2)求出四边形ABPC的面积最大时的P点坐标和四边形ABPC的最大面积;
(3)连结PO、PC,在同一平面内把△POC沿y轴翻折,得到四边形POP′C,是否存在点P,使四边形POP′C为菱形?若存在,请求出此时点P的坐标;若不存在,请说明理由;
(4)在直线BC找一点Q,使得△QOC为等腰三角形,请直接写出Q点坐标.
如图,在纸上剪下一个圆形和一个扇形的纸片,使之恰好能围成一个圆锥模型.若圆的半径为r,扇形的半径为R,扇形的圆心角等于90°,则r与R之间的关系是( ).
A.R=2r B.R= C.R=3r D.R=4r
如图,在5×5正方形网格中,一条圆弧经过A,B,C三点,那么这条圆弧所在圆的圆心是( ).
A.点P B.点Q C.点R D.点M
如图,线段CD两个端点的坐标分别为C(3,3),D(4,1),以原点O为位似中心,在第一象限内将线段CD扩大为原来的两倍,得到线段AB,则线段AB的中点E的坐标为 .
已知△ABC的面积是1,、、分别是△ABC三边上的中点,△的面积记为;、、分别是△三边上的中点,△的面积记为;以此类推,则△的面积是( ).
A. B. C. D.
抛物线y=﹣2(x﹣1)2+3可以通过抛物线y= 向 平移 个单位、再向 平移 个单位得到,其对称轴是 .
抛物线y=2(x﹣3)2+1的顶点坐标是( )
A.(3,1) B.(3,﹣1) C.(﹣3,1) D.(﹣3,﹣1)