题目内容
如图,∠BAD=∠CAE=90o,AB=AD,AE=AC, AF⊥CF,垂足为F.
(1)若AC=10,求四边形ABCD的面积;
(2)求证:AC平分∠ECF;
(3)求证:CE=2AF .
单项式的系数是_________.
某超市用3 000元购进某种干果销售,由于销售状况良好,超市又调拨9 000元购进该种干果,但这次的进价比第一次的进价提高了20%,购进干果数量比第一次的2倍还多300 kg.如果超市按9元/kg的价格出售,当大部分干果售出后,余下的600 kg按售价的八折售完.
(1)该种干果第一次的进价是多少?
(2)超市销售这种干果共盈利多少元?
【答案】(1)该种干果第一次的进价是5元/kg.(2)超市销售这种干果共盈利5820元.
【解析】试题分析:(1)、设第一次进价x元,第二次进价为1.2x,根据题意列出分式方程进行求解;(2)、根据利润=销售额-进价.
试题解析:(1)、设该种干果的第一次进价是每千克x元,则第二次进价是每千克(1+20%)x元,
由题意,得=2×+300,
解得x=5,
经检验x=5是方程的解.
答:该种干果的第一次进价是每千克5元;
(2)、[+﹣600]×9+600×9×80%﹣(3000+9000)
=(600+1500﹣600)×9+4320﹣12000
=1500×9+4320﹣12000=13500+4320﹣12000
=5820(元).
答:超市销售这种干果共盈利5820元.
考点:分式方程的应用.
【题型】解答题【结束】27
请仔细阅读下面材料,然后解决问题:
在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”.例如: , ;当分子的次数小于分母的次数时,我们称之为“真分式”,例如: , .我们知道,假分数可以化为带分数,例如: ,类似的,假分式也可以化为“带分式”(整式与真分式和的形式),例如: .
(1)将分式化为带分式;
(2)当x取哪些整数值时,分式的值也是整数?
(3)当x的值变化时,分式的最大值为 .
平面直角坐标系中,已知A(2,0),B(0,2)若在坐标轴上取C点,使△ABC为等腰三角形,则满足条件的点C的个数是( )
A. 4 B. 6 C. 7 D. 8
下列运算正确的是( )
A. B. C. D.
如图,C为线段AE上一动点(不与点A、E重合),在AE同侧分别作正△ABC和正△CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ.以下五个结论:①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP;⑤∠AOB=60°.
恒成立的结论有 .(把你认为正确的序号都填上)
如图,已知AE平分∠BAC,BE⊥AE于E,ED∥AC,∠BAE=36°,那么∠BED的度数为( )
A. 108° B. 120° C. 126° D. 144°
解方程:
(1) 5x+2=3(x+2);(2).
下列说法中正确的是( )
A. “任意画出一个等边三角形,它是轴对称图形”是随机事件
B. “任意画出一个平行四边形,它是中心对称图形”是必然事件
C. “概率为0.0001的事件”是不可能事件
D. 任意掷一枚质地均匀的硬币10次,正面向上的一定是5次