题目内容

16.如图,等边△ABC的边长为8,E为AC上一动点,ED⊥AB于D,DF⊥BC于F.
(1)若CE=2,求CF的长;
(2)当CE取何值时,DE=DF?

分析 (1)因为AC=8,CE=2,所以AE=AC-CE=6,又因为在Rt△AED中∠AED=90°-∠A=30°,根据直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半可得AD=$\frac{1}{2}$AE=3,所以BD=AB-AD=5,同理可知,在Rt△BFD中∠BDF=90°-∠B=30°,BF=$\frac{1}{2}$BD=$\frac{5}{2}$,CF=BC-FB=$\frac{11}{2}$,则可根据CF=BC-FB求得结果;
(2)根据AAS证得△BDE≌△CFE,则有AD=BF=$\frac{1}{2}$BD,AD=$\frac{1}{3}$AB=$\frac{8}{3}$,AE=2AD=$\frac{16}{3}$,则有CE=AC-AE=$\frac{8}{3}$时,DE=DF.

解答 解:(1)∵AC=8,CE=2,
∴AE=AC-CE=6,
在Rt△AED中,
∠AED=90°-∠A=30°,
∴AD=$\frac{1}{2}$AE=3,
∴BD=AB-AD=5,
在Rt△BFD中
∠BDF=90°-∠B=30°,
∴BF=$\frac{1}{2}$BD=$\frac{5}{2}$,
∴CF=BC-FB=$\frac{11}{2}$;

(2)在△AED和△DFB中,
$\left\{\begin{array}{l}{∠ADE=∠BFD}\\{∠A=∠B}\\{DE=DF}\end{array}\right.$,
∴△AED≌△BDF(AAS)
∴AD=BF,
∴AD=BF=$\frac{1}{2}$BD,
∴AD=$\frac{1}{3}$AB=$\frac{8}{3}$,
∴AE=2AD=$\frac{16}{3}$,
∴CE=AC-AE=$\frac{8}{3}$,
∴CE=$\frac{8}{3}$时,DE=DF.

点评 本题把全等三角形的判定和性质结合求解,考查学生综合运用数学知识的能力.充分掌握和理解直角三角形中的一些特殊的对应关系并灵活运用可解得此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网