题目内容

17.为了更好的保护美丽图画的邛海湿地,西昌市污水处理厂决定先购买A、B两型污水处理设备共20台,对邛海湿地周边污水进行处理,每台A型污水处理设备12万元,每台B型污水处理设备10万元.已知1台A型污水处理设备和2台B型污水处理设备每周可以处理污水640吨,2台A型污水处理设备和3台B型污水处理设备每周可以处理污水1080吨.
(1)求A、B两型污水处理设备每周分别可以处理污水多少吨?
(2)经预算,市污水处理厂购买设备的资金不超过230万元,每周处理污水的量不低于4500吨,请你列举出所有购买方案,并指出哪种方案所需资金最少?最少是多少?

分析 (1)根据1台A型污水处理设备和2台B型污水处理设备每周可以处理污水640吨,2台A型污水处理设备和3台B型污水处理设备每周可以处理污水1080吨,可以列出相应的二元一次方程组,从而解答本题;
(2)根据题意可以列出相应的不等式组,从而可以得到购买方案,从而可以算出每种方案购买资金,从而可以解答本题.

解答 解:(1)设A型污水处理设备每周每台可以处理污水x吨,B型污水处理设备每周每台可以处理污水y吨,
$\left\{\begin{array}{l}{x+2y=640}\\{2x+3y=1080}\end{array}\right.$
解得,$\left\{\begin{array}{l}{x=240}\\{y=200}\end{array}\right.$
即A型污水处理设备每周每台可以处理污水240吨,B型污水处理设备每周每台可以处理污水200吨;
(2)设购买A型污水处理设备x台,则购买B型污水处理设备(20-x)台,
则$\left\{\begin{array}{l}{12x+10(20-x)≤230}\\{240x+200(20-x)≥4500}\end{array}\right.$
解得,12.5≤x≤15,
第一种方案:当x=13时,20-x=7,花费的费用为:13×12+7×10=226万元;
第二种方案:当x=14时,20-x=6,花费的费用为:14×12+6×10=228万元;
第三种方案;当x=15时,20-x=5,花费的费用为:15×12+5×10=230万元;
即购买A型污水处理设备13台,则购买B型污水处理设备7台时,所需购买资金最少,最少是226万元.

点评 本题考查一元一次不等式组的应用、二元一次方程组的应用,解题的关键是明确题意,找出所求问题需要的条件.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网