题目内容
若函数y=
与y=x-2图象的一个交点坐标(a,b),则
-
的值为 .
| 1 |
| x |
| 1 |
| a |
| 1 |
| b |
考点:反比例函数与一次函数的交点问题
专题:
分析:根据函数解析式,可得b=
,b=a-2,进而得出ab=1,b-a=-2,即可求得
-
=
=
=-2.
| 1 |
| a |
| 1 |
| a |
| 1 |
| b |
| b-a |
| ab |
| -2 |
| 1 |
解答:解:∵函数y=
与y=x-2图象的一个交点坐标(a,b),
∴b=
,b=a-2,
∴ab=1,b-a=-2,
∴
-
=
=
=-2
故答案为-2.
| 1 |
| x |
∴b=
| 1 |
| a |
∴ab=1,b-a=-2,
∴
| 1 |
| a |
| 1 |
| b |
| b-a |
| ab |
| -2 |
| 1 |
故答案为-2.
点评:本题考查了反比例函数一次函数的交点问题,根据函数解析式得到ab=1,b-a=-2是解决本题的关键..
练习册系列答案
相关题目
点P(2,-1)在反比例函数y=
(k≠0)的图象上,则k的值是( )
| -k |
| x |
| A、2 | ||
B、
| ||
| C、-2 | ||
D、-
|