题目内容

18.如图,已知A、B两村分别距公路l的距离AA′=10km,BB′=40km,且A′B′=50km.在公路l上建一中转站P使AP+BP的值最小,则AP+BP的最小值为(  )
A.100kmB.80kmC.60kmD.50$\sqrt{2}$km

分析 作A关于直线A′B′的对称点C,连接BC,延长BB′,根据两点之间线段最短可知AP+BP的最小值即为BC的长,过C作BB′的垂线交直线BB′于D,根据对称的性质可求出A′C的长,由矩形的判定定理可判断出四边形A′CDB′是矩形,在Rt△BCD中由勾股定理即可求解.

解答 解:作A关于直线A′B′的对称点C,连接BC,延长BB′,
∵两点之间线段最短,
∴AP+BP的最小值即为BC的长,
过C作BB′的垂线交直线BB′于D,
∵A、C关于直线A′B′对称,AA′=10km,
∴A′C=10km,
∵AA′⊥A′B′,BB′⊥A′B′,
∴A′C∥B′D,
∵BB′⊥A′B′,CD⊥BB′,
∴A′B′∥CD,
∴四边形A′CDB′是矩形,
∴A′B′=CD=50km,BD=BB′+B′D=40+10=50km,
∴BC=$\sqrt{C{D}^{2}+B{D}^{2}}$=$\sqrt{5{0}^{2}+5{0}^{2}}$=50$\sqrt{2}$km.
故选:D.

点评 本题考查的是最短路线问题、矩形的判定定理及勾股定理,熟知两点之间线段最短是解答此题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网