题目内容
若x,y均为正整数,且2x•4y=32,则x+y的值为 .
3或4
已知抛一枚均匀硬币正面朝上的概率为,下列说法正确的是( )
A.连续抛一枚均匀硬币2次必有1次正面朝上
B.连续抛一枚均匀硬币10次,不可能正面都朝上
C.大量反复抛一枚均匀硬币,平均每100次出现下面朝上50次
D.通过抛一枚均匀硬币确定谁先发球的比赛规则是公平的
已知互为相反数,则的平方根是 ,
问题:你能比较两个数和的大小吗?(本题6分)
为了解决这个问题,我们先把它抽象成数学问题,写出它的一般形式,比较与的大小(n为正整数),从分析n=1,n=2,n=3,…的情形入手,通过归纳,发现规律,猜想出结论.
(1)(每空0.5分)比较各组数的大小① ; ②23 32;
③34 43; ④45 54
(2)由(1)猜想出与的大小关系是 ;(2分)
(3)由(2)可知: . (2分)
如图,已知直线L交直线a,b于A,B两点,且a∥b,,E是a上的点,F是b上的点,满足∠DAE=∠BAE, ∠DBF=∠ABF,则∠ADB的度数是 ( )
A. B. C. D.无法确定
如图,有分别过A、B两个加油站的公路、相交于点O,现准备在∠AOB内建一个油库,要求油库的位置点P满足到A、B两个加油站的距离相等,而且P到两条公路、的距离也相等。请用尺规作图作出点P(不写作法,保留作图痕迹).
某同学在一次课外活动中,用硬纸片做了两个直角三角形,见图①、②.图①中,∠B=90°,∠A=30°;图②中,∠D=90°,∠F=45°.图③是该同学所做的一个实验:他将△DEF的直角边DE与△ABC的斜边AC重合在一起,并将△DEF沿AC方向移动.在移动过程中,D、E两点始终在AC边上(移动开始时点D与点A重合).
(1)在△DEF沿AC方向移动的过程中,该同学发现:F、C两点间的距离逐渐 ;连接FC,∠FCE的度数逐渐 .(填“不变”、“变大”或“变小”)
(2)△DEF在移动的过程中,∠FCE与∠CFE度数之和是否为定值,请加以说明.
(3)能否将△DEF移动至某位置,使F、C的连线与AB平行?请求出∠CFE的度数.
若第二象限内的点满足,,则点P的坐标是 .
如图,在边长为c的正方形中,有四个斜边为c的全等直角三角形,已知其直角边长为a,b.利用这个图试说明勾股定理.