题目内容
设正整数m,n,满足m<n,且| 1 |
| m2+m |
| 1 |
| (m+1)2+(m+1) |
| 1 |
| n2+n |
| 1 |
| 23 |
分析:因为
=
=
-
,所以可对分式进行化简得到
-
=
,从而求得m,n的值.
| 1 |
| n2+n |
| 1 |
| n(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
| 1 |
| n |
| 1 |
| m+1 |
| 1 |
| 23 |
解答:解:∵
=
-
,
∴
+
+…+
,
=
-
+
-
+…+
-
,
=
-
=
=
,
∴m=22,n+1=23×22=506,n=505,
m+n=527.
| 1 |
| n2+n |
| 1 |
| n |
| 1 |
| n+1 |
∴
| 1 |
| m2+m |
| 1 |
| (m+1)2+(m+1) |
| 1 |
| n2+n |
=
| 1 |
| m |
| 1 |
| m+1 |
| 1 |
| m+1 |
| 1 |
| m+2 |
| 1 |
| n |
| 1 |
| n+1 |
=
| 1 |
| m |
| 1 |
| n+1 |
| 1 |
| 23 |
| 22 |
| 23×22 |
∴m=22,n+1=23×22=506,n=505,
m+n=527.
点评:本题关键是看到
=
-
这个规律,进行化简求解.
| 1 |
| n2+n |
| 1 |
| n |
| 1 |
| n+1 |
练习册系列答案
相关题目
设正整数a、m、n满足
=
-
,则这样的a、m、n的取值( )
a2-4
|
| m |
| n |
| A、有一组 | B、有二组 |
| C、多于二组 | D、不存在 |