题目内容
14.| A. | a+c | B. | a+b | C. | b+c | D. | a+b+c |
分析 由四边形ABCD是矩形,可得AB∥CD,AD∥BC,推出S△EDC=$\frac{1}{2}$S矩形ABCD,S△ABF+S△DFC=$\frac{1}{2}$S矩形ABCD,推出S△EDC=S△ABF+S△DFC,推出S△EGH+S阴+S△IDC=S△EBG+S△EGH+S四边形AEHF+S△FID+S△DIC,由此即可解决问题.
解答 解:∵四边形ABCD是矩形,
∴AB∥CD,AD∥BC,
∴S△EDC=$\frac{1}{2}$S矩形ABCD,S△ABF+S△DFC=$\frac{1}{2}$S矩形ABCD,
∴S△EDC=S△ABF+S△DFC,
∴S△EGH+S阴+S△IDC=S△EBG+S△EGH+S四边形AEHF+S△FID+S△DIC,
∴S阴=a+b+c,
故选D.
点评 本题考查矩形的性质,三角形的面积等知识,解题的关键是灵活运用所学知识解决问题,属于中考选择题中的压轴题.
练习册系列答案
相关题目