题目内容
14.证明:∵CD⊥DA,DA⊥AB,,
∴∠CDA=90°,∠DAB=90° (垂直定义).
∴∠1+∠3=90°,∠2+∠4=90°.
又∵∠1=∠2,
∴∠3=∠4 (等角的余角相等),
∴DF∥AE (内错角相等,两直线平行).
分析 先根据垂直的定义,得到∠1+∠3=90°,∠2+∠4=90°,再根据等角的余角相等,得出∠3=∠4,最后根据内错角相等,两直线平行进行判定即可.
解答 证明:∵CD⊥DA,DA⊥AB,
∴∠CDA=90°,∠DAB=90°,(垂直定义)
∴∠1+∠3=90°,∠2+∠4=90°.
又∵∠1=∠2,
∴∠3=∠4,(等角的余角相等)
∴DF∥AE.(内错角相等,两直线平行)
故答案为:CD⊥DA,DA⊥AB,垂直定义,∠3=∠4,等角的余角相等,内错角相等,两直线平行.
点评 本题主要考查了平行线的判定以及垂直的定义,解题时注意:内错角相等,两直线平行.
练习册系列答案
相关题目
6.
如图,∠1=15°,∠AOC=90°,点B,O,D在同一直线上,则∠2的度数为( )
| A. | 75° | B. | 30° | C. | 45° | D. | 105° |