题目内容

黄冈中学是百年名校,百年校庆上的焰火晚会令很多人记忆犹新.有一种焰火升高高度为h(m)与飞行时间t(s)的关系式是,若这种焰火在点燃升空后到最高处引爆,则从点火到引爆所需时间为__________s.

4 【解析】根据关系式可知焰火的运行轨迹是一个开口向下的抛物线,已知焰火在升到最高时引爆,即到达抛物线的顶点时引爆,顶点横坐标就是从点火到引爆所需时间.则t==4s, 故答案为:4.
练习册系列答案
相关题目

如图是某商场一楼与二楼之间的手扶电梯示意图,其中AB、CD分别表示一楼、二楼地面的水平线,∠ABC=150°,如果顾客乘地铁从点B到点C上升的高度为5m,则电梯BC的长是( )

A.5cm B.5cm C.10m D. m

C. 【解析】 试题分析:如图所示:过点C作CE⊥AB延长线于点E, ∵∠ABC=150°, ∴∠CBE=30°, ∵从点B到点C上升的高度为5m, ∴电梯BC的长是10m. 故选C.

分解因式: =6xy(______)

【解析】 =6xy().

下列各式从左到右的变形中,是因式分解的是( ).

A. x(a-b)=ax-bx B. x2-1+y2=(x-1)(x+1)+y2

C. y2-1=(y+1)(y-1) D. ax+bx+c=x(a+b)+c

C 【解析】A. 是整式的乘法,故A错误; B. 没把一个多项式转化成几个整式积,故B错误; C. 把一个多项式转化成几个整式积,故C正确; D. 没把一个多项式转化成几个整式积,故D错误; 故选:C.

用配方法把函数化成的形式,然后指出它的图象开口方向,对称轴,顶点坐标和最值.

向下,x=-1,(-1,13),最大值13 【解析】试题分析:根据这个函数的二次项系数是-3,配方法变形成的形式,直接可判断出开口方向,对称轴,顶点坐标和最值. 试题解析:∵, ∴开口向下,对称轴x=-1,顶点坐标(-1,13),最大值13.

若函数的自变量x的取值范围是全体实数,则c的取值范围是(  )

A. c>1

B. c=1

C. c<1

D. c≤1

A 【解析】先根据分式的意义,分母不等于0,得出,再根据二次函数(a≠0)的图象性质,可知当二次项系数a>0,△=时,有y>0,此时自变量x的取值范围是全体实数,解得c>1. 故选:A.

在同一直角坐标系中,函数y=kx2﹣k和y=kx+k(k≠0)的图象大致是(  )

A. B. C. D.

D 【解析】试题分析: A、由一次函数y=kx+k的图象可得:k>0,此时二次函数y=kx2﹣kx的图象应该开口向上,错误; B、由一次函数y=kx+k图象可知,k>0,此时二次函数y=kx2﹣kx的图象顶点应在y轴的负半轴,错误; C、由一次函数y=kx+k可知,y随x增大而减小时,直线与y轴交于负半轴,错误; D、正确. 故选:D.

已知抛物线的顶点坐标为P(2,-1),它的图象经过点C(0,3).

(1)求该抛物线的解析式.

(2)设该抛物线的图象与x轴交于A、B两点,求△ABC的面积.

(1);(2)3 【解析】分析:(1)设该抛物线方程为 ,然后将点(3,0)代入求得k的值;(2)令y=0,求出抛物线与x轴的交点坐标,然后根据三角形的面积公式列式计算求解. 本题解析:(1)∵抛物线的顶点坐标为P(2,-1), ∴设该抛物线方程为,(k≠0); ∵它的图象经过点C(0,3), ∴, 解得k=1, ∴该抛物线的解析式为,即; (2)令...

分式方程去分母时,两边都乘以________.

(x+1)(x-1)) 【解析】∵分式方程 可化为: , ∴去分母时,方程两边应都乘以: .

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网