题目内容
【题目】如图,已知正方形ABCD的边长为4,点E是正方形内都一点,连接BE,CE,且∠ABE=∠BCE,点F是AB边上一动点,连接FD,FE,则FD+FE的长度最小值为__.
![]()
【答案】2
-2
【解析】
根据正方形的性质得到∠ABC=90°,推出∠BEC=90°,得到点E在以BC为直径的半圆上移动,如图,设BC的中点为O,作正方形ABCD关于直线AB对称的正方形APGB,则点D的对应点是P,连接PO交AB于F,交⊙O于E,则线段EP的长即为FD+FE的长度最小值,根据勾股定理即可得到结论.
解:∵四边形ABCD是正方形,
∴∠ABC=90°,
∴∠ABE+∠CBE=90°,
∵∠ABE=∠BCE,
∴∠BCE+∠CBE=90°,
∴∠BEC=90°,
∴点E在以BC为直径的半圆上移动,
如图,设BC的中点为O,作正方形ABCD关于直线AB对称的正方形APGB,则点D的对应点是P,
连接PO交AB于F,交半圆O于E,则线段EP的长即为FD+FE的长度最小值,OE=4,
∵∠G=90°,PG=BG=AB=4,
∴OG=6,
∴OP=
=
,
∴EP=
-2,
∴FD+FE的长度最小值为
-2,
故答案为:2
-2.
![]()
【题目】(7分)某中学1000名学生参加了”环保知识竞赛“,为了了解本次竞赛成绩情况,从中抽取了部分学生的成绩(得分取整数,满分为100分)作为样本进行统计,并制作了如图频数分布表和频数分布直方图(不完整且局部污损,其中“■”表示被污损的数据).请解答下列问题:
成绩分组 | 频数 | 频率 |
50≤x<60 | 8 | 0.16 |
60≤x<70 | 12 | a |
70≤x<80 | ■ | 0.5 |
80≤x<90 | 3 | 0.06 |
90≤x≤100 | b | c |
合计 | ■ | 1 |
(1)写出a,b,c的值;
(2)请估计这1000名学生中有多少人的竞赛成绩不低于70分;
(3)在选取的样本中,从竞赛成绩是80分以上(含80分)的同学中随机抽取两名同学参加环保知识宣传活动,求所抽取的2名同学来自同一组的概率.
![]()