题目内容

13.如图,在矩形ABCD中,AB=3,BC=4,对角线AC、BD相交于点O,过A作AE⊥BD交BD于点E,将△ABE沿AE折叠,点B恰好落在线段OD的F点处,则DF的长为(  )
A.$\frac{9}{5}$B.$\frac{18}{5}$C.$\frac{7}{5}$D.$\frac{16}{5}$

分析 由矩形的性质得出∠BAD=90°,AD=BC=4,由勾股定理求出BD,由三角形的面积求出AE,由勾股定理得出BE,由翻折变换的性质得出EF=BE=$\frac{9}{5}$,即可得出结果.

解答 解:∵四边形ABCD是矩形,
∴∠BAD=90°,AD=BC=4,
∴BD=$\sqrt{A{B}^{2}+A{D}^{2}}$=5,
∵AE⊥BD,
∴△ABD的面积=$\frac{1}{2}$AB•AD=$\frac{1}{2}$BD•AE,
∴AE=$\frac{AB×AD}{BD}$=$\frac{12}{5}$,
∴BE=$\sqrt{A{B}^{2}-A{E}^{2}}$=$\frac{9}{5}$,
由翻折变换的性质得:EF=BE=$\frac{9}{5}$,
∴DF=BD-BE-EF=5-$\frac{9}{5}$-$\frac{9}{5}$=$\frac{7}{5}$.
故选:C.

点评 本题考查了矩形的性质、勾股定理、翻折变换的性质、三角形面积的计算;熟练掌握矩形和翻折变换的性质,由勾股定理求出BE是解决问题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网