题目内容
在Rt△ABC中,∠C=90°.若sinA=,则cosB的值是
如图,△ABC三个顶点的坐标分别为A(2,4),B(1,1),C(4,3).
(1)请画出△ABC关于x轴对称的△A1B1C1,并写出点A1的坐标;
(2)请画出△ABC绕点B逆时针旋转90°后的△A2BC2;
(3)求出(2)中C点旋转到C2点所经过的路径长(结果保留根号和π).
一元二次方程ax2+bx+c=0(a≠0)有两个不相等的实数根,则b2﹣4ac满足的条件是( )
A.b2﹣4ac=0 B.b2﹣4ac>0 C.b2﹣4ac<0 D.b2﹣4ac≥0
如图,抛物线y=﹣x2+mx+n与x轴交于A、B两点,与y轴交于点C,抛物线的对称轴交x轴于点D,已知A(﹣1,0),C(0,2).
(1)求抛物线的表达式;
(2)在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明理由;
(3)点E是线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标.
如图,为测量一棵与地面垂直的树OA的高度,在距离树的底端O点30米的B处,测得
树顶4的仰角∠ABO为α,则树OA的高度为
A.米 B.30sinα米 C.30tanα米 D.30cosα米
计算:2cos 30°+tan 45- 4sin260°.
如图,反比例函数y= 与一次函数y=k2x+b图象的交点为4(m,1),B(-2,n),OA与x轴正方向的夹角为α,且tanα=.
(1)求反比例函数及一次函数的表达式;
(2)设直线AB与x轴交于点C,且AC与x轴正方向的夹角为β,求tanβ的值.
三角形的中位线把三角形分成两部分面积之比是 .
分式方程的解是( )
A.x=﹣1 B.x= C.x=﹣3 D.x=