题目内容

如图,直线y=-x+b(b>0)与双曲线y=
k
x
(x>0)交于A,B两点,连接OA,OB,AM⊥y轴于M,AN⊥x轴于N,有以下结论:
①OA=OB;②△AOM≌△BON;③若∠AOB=45°,则S△AOB=k.
其中正确的是
 
(填序号即可).
考点:反比例函数综合题
专题:综合题
分析:①②设A(x1,y1),B(x2,y2),联立y=-x+b与y=
k
x
,得x2-bx+k=0,则x1•x2=k,又x1•y1=k,比较可知x2=y1,同理可得x1=y2,即ON=OM,AM=BN,可证结论;
③作OH⊥AB,垂足为H,根据对称性可证△OAM≌△OAH≌△OBH≌△OBN,可证S△AOB=k;
解答:解:设A(x1,y1),B(x2,y2),代入y=
k
x
中,得x1•y1=x2•y2=k,
联立
y=-x+b
y=
k
b
,消去y得:x2-bx+k=0,
则x1•x2=k,又x1•y1=k,
∴x2=y1
同理x2•y2=k,
可得x1=y2
∴ON=OM,AM=BN,
在△AOM和△BON中,
AM=BN
∠AMO=∠BNO
OM=ON

∴△AOM≌△BON,
∴OA=OB,即①②正确;
③作OH⊥AB,垂足为H,
∵OA=OB,∠AOB=45°,
∵△AOM≌△BON,
∴∠MOA=∠BON=22.5°,∠AOH=∠BOH=22.5°,
∴△OAM≌△OAH≌△OBH≌△OBN,
∴S△AOB=S△AOH+S△BOH=S△AOM+S△BON=
1
2
k+
1
2
k=k,正确;
正确的结论有①②③.
故答案为:①②③
点评:此题考查了反比例函数的综合运用,解题的关键是明确反比例函数图象上点的坐标特点,反比例函数图象的对称性.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网