题目内容

如图,一段街道的两边缘所在直线分别为AB,PQ,并且AB∥PQ.建筑物的一端DE所在的直线MN⊥AB于点M,交PQ于点N,步行街宽MN为13.4米,建筑物宽DE为6米,光明巷宽EN为2.4米.小亮在胜利街的A处,测得此时AM为12米,求此时小亮距建筑物拐角D处有多远?
考点:勾股定理的应用
专题:
分析:连接AD,先根据步行街宽MN为13.4米,建筑物宽DE为6米,光明巷宽EN为2.4米求出MD的长,再根据勾股定理即可得出AD的长.
解答:解:∵AB∥PQ.MN⊥AB,交PQ于点N,MN=13.4米,
DE=6米,EN=2.4米.
∴MD=13.4-6-2.4=5(米),
∴AD=
AM2+DM2
=
122+52
=13米.
答:此时小亮距建筑物拐角D处有13米.
点评:本题考查的是勾股定理的应用,根据题意作出辅助线,构造出直角三角形是解答此题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网