题目内容
8.(1)当点P位于$\widehat{AB}$的什么位置时,四边形APBC的面积最大?并求出最大面积;
(2)试探究线段PA,PB,PC之间的数量关系,并证明你的结论.
分析 (1)过点P作PE⊥AB,垂足为E,过点C作CF⊥AB,垂足为F,把四边形的面积转化为两个三角形的面积进行计算,当点P为$\widehat{AB}$的中点时,PE+CF=PC从而得出最大面积;
(2)在PC上截取PD=AP,则△APD是等边三角形,然后证明△APB≌△ADC,证明BP=CD,即可证得.
解答 解:(1)当点P为$\widehat{AB}$的中点时,四边形APBC的面积最大.![]()
理由如下,如图2,过点P作PE⊥AB,垂足为E.
过点C作CF⊥AB,垂足为F.
∵S△APB=$\frac{1}{2}$AB•PE,S△ABC=$\frac{1}{2}$AB•CF,
∴S四边形APBC=$\frac{1}{2}$AB•(PE+CF),
当点P为$\widehat{AB}$的中点时,PE+CF=PC,PC为⊙O的直径,
∴此时四边形APBC的面积最大.
又∵⊙O的半径为1,
∴其内接正三角形的边长AB=$\sqrt{3}$,
∴S四边形APBC=$\frac{1}{2}$×2×$\sqrt{3}$=$\sqrt{3}$;
(2)在PC上截取PD=AP,如图1,![]()
又∵∠APC=60°,
∴△APD是等边三角形,
∴AD=AP=PD,∠ADP=60°,即∠ADC=120°.
又∵∠APB=∠APC+∠BPC=120°,
∴∠ADC=∠APB,
在△APB和△ADC中,
$\left\{\begin{array}{l}{∠APB=∠ADC}\\{∠ABP=∠ACD}\\{AP=AD}\end{array}\right.$,
∴△APB≌△ADC(AAS),
∴BP=CD,
又∵PD=AP,
∴CP=BP+AP.
点评 本题考查了圆周角定理、等边三角形的判定、三角形的面积公式以及三角形的全等的判定与性质,正确作出辅助线,证明△APB≌△ADC是关键.
| A. | a的相反数是-a | B. | a的倒数是-a | C. | a的绝对值是±a | D. | a的平方是正数 |
| 购票人数 | 50人以下 | 51~100人 | 100人以上 |
| 票价 | 13元/人 | 11元/人 | 9元/人 |
(1)若以班为单位分别购票,一共应付1240元,求两班各有多少人?
(2)若两班联合购票可少付多少元?
| A. | 1 | B. | 2 | C. | -1 | D. | -2 |