题目内容

6.如图,是抛物线y=ax2+bx+c的一部分,其对称轴为直线x=1,它与x轴的一个交点为A(3,0),根据图象,可知关于x的一元二次方程ax2+bx+c=0的解是3或-1.

分析 根据抛物线与x轴的两个交点到对称轴的距离相等,设另一个交点为(x,0),可得$\frac{3+x}{2}$=1,解得x的值,关于x的一元二次方程ax2+bx+c=0的解就是抛物线与x轴交点的横坐标.

解答 解:设抛物线与x轴的另一个交点坐标为:(x,0),
∵抛物线与x轴的两个交点到对称轴的距离相等,
∴$\frac{3+x}{2}$=1,
解得:x=-1,
∴抛物线与x轴的另一个交点坐标为:(-1,0),
∴关于x的一元二次方程ax2+bx+c=0的解是3或-1.

点评 本题考查了求抛物线与x轴的交点问题,关键是掌握抛物线与x轴的两交点关于对称轴对称.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网