题目内容

6.如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则sin∠ECB为(  )
A.$\frac{3}{5}$B.$\frac{3\sqrt{13}}{13}$C.$\frac{2}{3}$D.$\frac{2\sqrt{13}}{13}$

分析 根据垂径定理得到AC=BC=$\frac{1}{2}$AB=4,设AO=x,则OC=OD-CD=x-2,在Rt△ACO中根据勾股定理得到x2=42+(x-2)2,解得x=5,则AE=10,OC=3,再由AE是直径,根据圆周角定理得到∠ABE=90°,利用OC是△ABE的中位线得到BE=2OC=6,然后在Rt△CBE中利用勾股定理可计算出CE,由三角函数的定义求出sin∠ECB即可.

解答 解:连结BE,如图,
∵OD⊥AB,
∴AC=BC=$\frac{1}{2}$AB=$\frac{1}{2}$×8=4,
设AO=x,则OC=OD-CD=x-2,
在Rt△ACO中,∵AO2=AC2+OC2
∴x2=42+(x-2)2
解得:x=5,
∴AE=10,OC=3,
∵AE是直径,
∴∠ABE=90°,
∵OC是△ABE的中位线,
∴BE=2OC=6,
在Rt△CBE中,CE=$\sqrt{C{B}^{2}+B{E}^{2}}$=$\sqrt{{4}^{2}+{6}^{2}}$=2$\sqrt{13}$,
∴sin∠ECB=$\frac{BE}{CE}$=$\frac{6}{2\sqrt{13}}$=$\frac{3\sqrt{13}}{13}$.
故选:B.

点评 本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理、圆周角定理、三角函数;由勾股定理求出半径是解决问题的突破口.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网