题目内容

如图,在半径为2的扇形OAB中,∠AOB=90°,点C是弧AB上的—个动点(不与A,B重合),OD⊥BC,OE⊥AC,垂足分别为D,E,则DE的长度( )

A.1 B.2 C. D.

C.

【解析】

试题分析:连接AB,由OD垂直于BC,OE垂直于AC,利用垂径定理得到D、E分别为BC、AC的中点,即ED为三角形ABC的中位线,由OA=OB=2,且∠AOB=90°,利用勾股定理求出AB的长,即可求出ED的长.

试题解析:连接AB,

∵OD⊥BC,OE⊥AC,

∴D、E分别为BC、AC的中点,

∴DE为△ABC的中位线,

∵OA=OB=2,∠AOB=90°,

∴根据勾股定理得:AB=

则DE=AB=

故选C.

考点:1.垂径定理;2.三角形中位线定理.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网