题目内容

15.如图,在四边形ABCD中,AB=AD,AC与BD相交于点E,∠ADB=∠ACB.
求证:AD2=AE•AC.

分析 由AB=AD,利用等边对等角得到一对角相等,再由已知角相等,等量代换得到∠ABD=∠ACB,再由一对公共角,得到三角形BAE与三角形CAB相似,由相似得比例,等量代换即可得证.

解答 证明:∵AB=AD,
∴∠ADB=∠ABD,
∵∠ADB=∠ACB,
∴∠ABD=∠ACB,
∵∠BAE=∠CAB,
∴△BAE∽△CAB,
∴$\frac{AB}{AC}$=$\frac{AE}{AB}$,即AB2=AC•AE,
∵AB=AD,
∴AD2=AC•AE;

点评 此题考查了相似三角形的判定与性质,等腰三角形的性质;熟练掌握相似三角形的判定与性质是解本题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网