题目内容
用配方法解一元二次方程,此方程可变形为( )
A. B.
C. D.
如图:已知在△ABC中,AB=AC,D为BC边的中点,过点D作DE⊥AB,DF⊥AC,,垂足分别为E,F.
(1)求证:△BED≌△CFD;
(2)若∠A=90°,求证:四边形DFAE是正方形.
已知:如图,E(-4,2),F(-1,-1),以O为位似中心,按比例尺1∶2,把△EFO缩小,则点E的对应点的坐标为 .
如图,某小区有一块长为30m,宽为24m的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为480m2,两块绿地之间及周边有宽度相等的人行通道,则人行通道的宽度为______m.
某公司今年销售一种产品,一月份获得利润10万元,由于产品畅销,利润逐月增加,一季度共获利36.4万元,已知2月份和3月份利润的月增长率相同. 设2,3月份利润的月增长率为x,那么x满足的方程为( )
A.
B.
C.
D.
下列四个图形中,既是轴对称图形又是中心对称图形的是( )
如图,在边长为1的小正方形组成的方格纸上,将△ABC绕着点A顺时针旋转90°
(1)画出旋转之后的△AB′C′;
(2)求线段AC旋转过程中扫过的扇形的面积.
如图所示的几何体的俯视图是( )
A. B. C. D.
已知a=+2,b=﹣2,则的值为( ).
A.3 B.4 C.5 D.6