题目内容
8.方程组:$\left\{\begin{array}{l}{3(x+y)-4(x-y)=-9}\\{\frac{x+y}{2}+\frac{x-y}{6}=1}\end{array}\right.$的解是$\left\{\begin{array}{l}{x=2}\\{y=-1}\end{array}\right.$.分析 方程组整理后,利用加减消元法求出解即可.
解答 解:方程组整理得:$\left\{\begin{array}{l}{-x+7y=-9①}\\{2x+y=3②}\end{array}\right.$,
①×2+②得:15y=-15,即y=-1,
把y=-1代入①得:x=2,
则方程组的解为$\left\{\begin{array}{l}{x=2}\\{y=-1}\end{array}\right.$.
故答案为:$\left\{\begin{array}{l}{x=2}\\{y=-1}\end{array}\right.$.
点评 此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.
练习册系列答案
相关题目
19.下列计算中正确的是( )
| A. | x3•x2=2x6 | B. | (-3x3)2=-6x6 | C. | (x3)2=x5 | D. | x6÷x2=x4 |