题目内容

已知xyz=1,x+y+z=2,x2+y2+z2=16.则
1
xy+2z
+
1
yz+2x
+
1
zx+2y
=
 
考点:分式的化简求值
专题:计算题
分析:由已知x+y+z=2,两边平方整理可得xy+yz+xz=-6,又z=2-x-y,所以,可得
1
xy+2z
=
1
xy+4-2x-2y
=
1
(x-2)(y-2)
,同理可得,
1
yz+2x
=
1
(y-2)(z-2)
1
zx+2y
=
1
(z-2)(x-2)
,代入原式,整理即可得出;
解答:解:∵x+y+z=2,两边平方得,
x2+y2+z2+2xy+2yz+2xz=4,
∵x2+y2+z2=16,
∴xy+yz+xz=-6,
又∵z=2-x-y,
1
xy+2z
=
1
xy+4-2x-2y
=
1
(x-2)(y-2)

同理得,
1
yz+2x
=
1
(y-2)(z-2)

1
zx+2y
=
1
(z-2)(x-2)

1
xy+2z
+
1
yz+2x
+
1
zx+2y

=
1
(x-2)(y-2)
+
1
(y-2)(z-2)
+
1
(z-2)(x-2)

=
(z-2)+(x-2)+(y-2)
(x-2)(y-2)(z-2)

=
x+y+z-6
xyz-2(xy+yz+zx)+4(x+y+z)-8

=
2-6
1+12+8-8

=-
4
13

故答案为:-
4
13
点评:本题主要考查了分式的化简求值,熟记分式的基本性质,是正确解答本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网