题目内容
已知xyz=1,x+y+z=2,x2+y2+z2=16.则
+
+
= .
| 1 |
| xy+2z |
| 1 |
| yz+2x |
| 1 |
| zx+2y |
考点:分式的化简求值
专题:计算题
分析:由已知x+y+z=2,两边平方整理可得xy+yz+xz=-6,又z=2-x-y,所以,可得
=
=
,同理可得,
=
,
=
,代入原式,整理即可得出;
| 1 |
| xy+2z |
| 1 |
| xy+4-2x-2y |
| 1 |
| (x-2)(y-2) |
| 1 |
| yz+2x |
| 1 |
| (y-2)(z-2) |
| 1 |
| zx+2y |
| 1 |
| (z-2)(x-2) |
解答:解:∵x+y+z=2,两边平方得,
x2+y2+z2+2xy+2yz+2xz=4,
∵x2+y2+z2=16,
∴xy+yz+xz=-6,
又∵z=2-x-y,
∴
=
=
,
同理得,
=
,
=
,
∴
+
+
,
=
+
+
,
=
,
=
,
=
,
=-
;
故答案为:-
.
x2+y2+z2+2xy+2yz+2xz=4,
∵x2+y2+z2=16,
∴xy+yz+xz=-6,
又∵z=2-x-y,
∴
| 1 |
| xy+2z |
| 1 |
| xy+4-2x-2y |
| 1 |
| (x-2)(y-2) |
同理得,
| 1 |
| yz+2x |
| 1 |
| (y-2)(z-2) |
| 1 |
| zx+2y |
| 1 |
| (z-2)(x-2) |
∴
| 1 |
| xy+2z |
| 1 |
| yz+2x |
| 1 |
| zx+2y |
=
| 1 |
| (x-2)(y-2) |
| 1 |
| (y-2)(z-2) |
| 1 |
| (z-2)(x-2) |
=
| (z-2)+(x-2)+(y-2) |
| (x-2)(y-2)(z-2) |
=
| x+y+z-6 |
| xyz-2(xy+yz+zx)+4(x+y+z)-8 |
=
| 2-6 |
| 1+12+8-8 |
=-
| 4 |
| 13 |
故答案为:-
| 4 |
| 13 |
点评:本题主要考查了分式的化简求值,熟记分式的基本性质,是正确解答本题的关键.
练习册系列答案
相关题目
| A、36 | B、87 | C、72 | D、102 |
当a>0,b<0时,下列各式中值最小的是( )
| A、a-b | B、-a-b |
| C、-a+b | D、a+b |
| A、-2 | B、4 | C、6 | D、8 |