题目内容

已知如图,等腰梯形ABCD,AB=CD,BE=CE,求证:AE=DE.

见解析 【解析】【试题分析】 等腰梯形ABCD,AB=CD,根据等腰梯形的性质得:∠ABC=∠DCB,因为BE=CE,根据等边对等角得:∠EBC=∠ECB;根据等式的性质得:∠EBC﹣∠ABC=∠ECB﹣∠DCB,即∠EBA=∠ECD;在△EBA和△ECD中,AB=CD,∠EBA=∠ECD,BE=CE,根据边角边定理得:△EBA≌△ECD(SAS),根据全等三角形的性质得:AE=DE....
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网