题目内容

1.如图①,已知点A(4,4),P为x轴正半轴上一点,AQ⊥AP交y轴于Q.
(1)判断AP与AQ的大小.
(2)当点P在x轴正半轴上运动,点Q在y轴正半轴上时,①OP+OQ与②|OP-OQ|中哪个为定值,并求其值.
(3)当点P在x轴正半轴上运动,点Q在y轴负半轴上时,如图②,(2)中的哪个为定值,并求其值.

分析 (1)在图①中,作AM⊥OQ,AN⊥OP垂足分别为M,N,由△AMQ≌△ANP即可得到证明.
(2)利用(1)的结论,根据线段和差定义证明①是定值.
(3)根据△AMQ≌△ANP得AM=AN,MQ=PN,利用线段和差定义解决,可以证明②是定值.

解答 解:(1)在图①中,作AM⊥OQ,AN⊥OP垂足分别为M,N.
∵点A坐标(4,4),
∴OM=0N=AM=AN=4,
∵∠MAN=∠PAQ=90°,
∴∠MAQ=∠NAP,
在△AMQ和△ANP中,
$\left\{\begin{array}{l}{∠MAQ=∠NAP}\\{AM=AN}\\{∠AMQ=∠ANP=90°}\end{array}\right.$,
∴△AMQ≌△ANP,
∴AQ=AP.
(2)OP+OQ=8,是定值.理由如下:
由(1)可知,△AMQ≌△ANP,
∴QM=PN,
OP+OQ=(ON-PN)+(OM+QM)=2OM=8(定值).
(3)|OP-OQ|=8是定值.理由如下:
在图②中,作AM⊥OQ,AN⊥OP垂足分别为M,N.
∵点A坐标(4,4),
∴OM=0N=AM=AN=4,
∵∠MAN=∠PAQ=90°,
∴∠MAQ=∠NAP,
在△AMQ和△ANP中,
$\left\{\begin{array}{l}{∠MAQ=∠NAP}\\{AM=AN}\\{∠AMQ=∠ANP=90°}\end{array}\right.$,
∴△AMQ≌△ANP,
∴AM=AN,MQ=PN,
∴|OP-OQ|=|(ON+PN)-(QM-OQM|=2OM=8(定值).

点评 本题考查平面直角坐标系的有关知识、全等三角形的判定和性质、线段和差定义,构造全等三角形是解决问题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网