题目内容

9.计算:$\sqrt{18}$+($\sqrt{2}$-1)2-9${\;}^{\frac{1}{2}}$+($\frac{1}{2}$)-1

分析 根据负整数指数幂和分数指数幂的意义计算.

解答 解:原式=3$\sqrt{2}$+2-2$\sqrt{2}$+1-3+2
=$\sqrt{2}$+2.

点评 本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.

练习册系列答案
相关题目
17.某工厂甲、乙两个部门各有员工400人,为了解这两个部门员工的生产技能情况,进行了抽样调查,过程如下,请补充完整.
收集数据
从甲、乙两个部门各随机抽取20名员工,进行了生产技能测试,测试成绩(百分制)如下:
甲   78  86  74  81  75  76  87  70  75  90  75  79  81  70  74  80  86  69  83  77
乙   93  73  88  81  72  81  94  83  77  83  80  81  70  81  73  78  82  80  70  40
整理、描述数据
按如下分数段整理、描述这两组样本数据:
成绩x
人数
部门
40≤x≤4950≤x≤5960≤x≤6970≤x≤7980≤x≤8990≤x≤100
0011171
100710
(说明:成绩80分及以上为生产技能优秀,70--79分为生产技能良好,60--69分为生产技能合格,60分以下为生产技能不合格)
分析数据
两组样本数据的平均数、中位数、众数如下表所示:
部门平均数中位数众数
78.377.575
7880.581
得出结论:a.估计乙部门生产技能优秀的员工人数为240;b.可以推断出甲或乙部门员工的生产技能水平较高,理由为①甲部门生产技能测试中,平均分较高,表示甲部门员工的生产技能水平较高;
②甲部门生产技能测试中,没有技能不合格的员工,表示甲部门员工的生产技能水平较高.
或①乙部门生产技能测试中,中位数较高,表示乙部门员工的生产技能水平较高;
②乙部门生产技能测试中,众数较高,表示乙部门员工的生产技能水平较高..(至少从两个不同的角度说明推断的合理性)

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网