题目内容

如图,设半圆的圆心O在直角△ABC的斜边AB上,且与两直角边相切于D、E,若△ABC的面积为S,斜边长为c,则圆的半径为________.


分析:连OD,OE,OC,根据切线性质得OD⊥AC,OE⊥BC,设AC=b,BC=a,OD=OE=R,则S△ABC=S△AOC+S△BOC,即bR+aR=S,
得到a+b=,再利用勾股定理得到a+b=,这样就可求得R的值.
解答:解:连OD,OE,OC,如图,
∵D,E为切点,
∴OD⊥AC,OE⊥BC,
设AC=b,BC=a,OD=OE=R,
∵S△ABC=S△AOC+S△BOC
bR+aR=S,
∴a+b=
又∵a2+b2=c2
∴(a+b)2=c2+2ab,
∴a+b=
=
∴R=
故答案为:
点评:本题考查了切线的性质:圆心与切点的连线垂直切线,过圆心垂直于切线的直线必过切点;过圆外一点引圆的两条切线,切线长相等,也考查了三角形的面积公式和勾股定理以及代数式的变形能力.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网