题目内容

如图,P是平行四边形纸片ABCD的BC边上一点,以过点P的直线为折痕折叠纸片,使点C,D落在纸片所在平面上C′,D′处,折痕与AD边交于点M;再以过点P的直线为折痕折叠纸片,使点B恰好落在C′P边上B′处,折痕与AB边交于点N.若∠MPC=75°,则∠NPB′=
 
°.
考点:翻折变换(折叠问题)
专题:
分析:由折叠的性质可知:∠MNC=∠C′PM=75°,∠C′PN=∠BPN,再利用平角为180°,即可求出∠NPB′的度数.
解答:解:由折叠的性质可知:∠MNC=∠C′PM=75°,∠C′PN=∠BPN,
∴∠NPM=2×75°=150°,
∴∠C′PB=30°,
由折叠的性质可知:∠C′PN=∠BPN,
∴∠NPB′=15°.
故答案为:15.
点评:本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网