题目内容
【题目】为进一步普及足球知识,传播足球文化,某市在中小学举行了“足球在身边”知识竞赛活动,各类获奖学生人数的比例情况如图所示,其中获得三等奖的学生共50名,请结合图中信息,解答下列问题:
![]()
(1)获得一等奖的学生有 人;
(2)在本次知识竞赛活动中,A,B,C,D 四所学校表现突出,现决定从这四所学校中随机选取两所学校举行一场足球友谊赛,请用画树状图或列表的方法求恰好选到A,B两所学校的概率.
【答案】(1)30;(2)表见解析,![]()
【解析】
(1)根据三等奖所在扇形的圆心角的度数求得总人数,然后乘以一等奖所占的百分比即可求得一等奖的学生数;
(2)列表将所有等可能的结果列举出来,利用概率公式求解即可.
解:(1)∵三等奖所在扇形的圆心角为90°,
∴三等奖所占的百分比为25%,
∵三等奖为50人,
∴总人数为50÷25%=200人,
∴一等奖的学生人数为200×(1-20%-25%-40%)=30人;
故答案是:30.
(2)列如下表:
A | B | C | D | |
A | (B,A) | (C,A) | (D,A) | |
B | (A,B) | (C,B) | (D,B) | |
C | (A,C) | (B,C) | (D,C) | |
D | (A,D) | (B,D) | (C,D) |
从表中可以看到总的有12种情况,而A、B分到一组的情况有2 种,故恰好选到A、B两所学校的概率为
.
练习册系列答案
相关题目