题目内容
在一个不透明的口袋中,装有个红球和若干个白球,这些除颜色外其余都相同,如果摸到红球的概率是,那么口袋中有白球__________个.
如图,已知反比例函数y=与一次函数y=x+1的图象交于点A(a,﹣1)、B(1,b),则不等式≥x+1的解集为________.
从甲学校到乙学校有A1、A2、A3三条线路,从乙学校到丙学校有B1、B2二条线路.
(1)利用树状图或列表的方法表示从甲学校到丙学校的线路中所有可能出现的结果;
(2)小张任意走了一条从甲学校到丙学校的线路,求小张恰好经过了B1线路的概率是多少?
计算:.
已知: 在直角坐标平面内,三个顶点的坐标分别为, , (正方形网格中每个小正方形边长是个单位长度)
()是绕点__________逆时针旋转__________度得到的, 的坐标是__________.
()求出线段旋转过程中所扫过的面积(结果保留).
如图,在中, , , , 是斜边上的高,则的长度为( ).
A. B. C. D.
如图,抛物线y=ax2+bx﹣4与x轴交于A(4,0)、B(﹣2,0)两点,与y轴交于点C,点P是线段AB上一动点(端点除外),过点P作PD∥AC,交BC于点D,连接CP.
(1)求该抛物线的解析式;
(2)当动点P运动到何处时,BP2=BD•BC;
(3)当△PCD的面积最大时,求点P的坐标.
一列快车从甲地驶往乙地,一列特快车从乙地驶往甲地,快车的速度为100千米/小时,特快车的速度为150千米/小时,甲乙两地之间的距离为1000千米,两车同时出发,则图中折线大致表示两车之间的距离y(千米)与快车行驶时间t(小时)之间的函数图象是
如图,BD=CD,∠B=∠C,求证:AD平分∠BAC。