题目内容
13.若关于x的方程x2-6x+m2=0有两个相同的实数根,则m的值为±3.分析 根据方程有两个相等的实数根,得出根的判别式等于0,即可求出m的值.
解答 解:∵关于x的方程x2-6x+m2=0有两个相同的实数根,
∴△=(-6)2-4m2=0,
∴m=±3.
故答案为:±3.
点评 此题考查了根的判别式,一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:
①当△>0时,方程有两个不相等的两个实数根;
②当△=0时,方程有两个相等的两个实数根;
③当△<0时,方程无实数根.
上面的结论反过来也成立.
练习册系列答案
相关题目
1.下列计算中,正确的是( )
| A. | (3a)2=6a2 | B. | a2•a5=a10 | C. | (x4)3=x12 | D. | a6÷a2=a3 |
5.一家蔬菜公司收购某种绿色蔬菜140吨,准备加工后进行销售,销售后获利的情况如图所示
已知该公司的加工能力是:粗加工每天加工该种蔬菜的重量是精加工的3倍,但两种加工不能同时进行受季节等条件的限制,公司必须在一定时间内将这批蔬菜全部加工后销售.
(1)若要求15天刚好加工完140吨蔬菜,如果绿色蔬菜先精加工20吨,剩下的再进行粗加工,正好按时完成,求精加工和粗加工每天各能加工的吨数.
(2)若要求在13天的时间内,将140吨蔬菜全部加工完,并且两种加工方式都要有,先精加工后粗加工,问哪种分配加工时间(时间取整)的方案利润最大,最大利润是多少?
| 销售方式 | 粗加工后销售 | 精加工后销售 |
| 每吨获利(元) | 1000 | 2000 |
(1)若要求15天刚好加工完140吨蔬菜,如果绿色蔬菜先精加工20吨,剩下的再进行粗加工,正好按时完成,求精加工和粗加工每天各能加工的吨数.
(2)若要求在13天的时间内,将140吨蔬菜全部加工完,并且两种加工方式都要有,先精加工后粗加工,问哪种分配加工时间(时间取整)的方案利润最大,最大利润是多少?