题目内容
一元一次不等式组的解集中,整数解的个数是( )
A.4 B.5 C.6 D.7
(本题满分10分)【问题情境】如图1,在△ABC中,AB=AC,点P为边BC上的任一点,过点P作PD⊥AB,PE⊥AC,垂足分别为D、E,过点C作CF⊥AB,垂足为F.求证:PD+PE=CF.
【结论运用】如图2,将矩形ABCD沿EF折叠,使点D落在点B上,点C落在点C′处,点P为折痕EF上的任一点,过点P作PG⊥BE、PH⊥BC,垂足分别为G、H,若AD=8,CF=3,求PG+PH的值;
【迁移拓展】图3是一个航模的截面示意图.在四边形ABCD中,E为AB边上的一点,ED⊥AD,EC⊥CB,垂足分别为D、C,且AD·CE=DE·BC,AB=8,AD=3,BD=7;M、N分别为AE、BE的中点,连接DM、CN,求△DEM与△CEN的周长之和.
等腰三角形一腰上的高与另一腰的夹角为30°,腰长为a,则其底边上的高是___________.
(6分)如图,某数学兴趣小组想测量一棵树CD的高度,他们先在点A处测得树顶C的仰角为30°,然后沿AD方向前行10m,到达B点,在B处测得树顶C的仰角高度为60°(A、B、D三点在同一直线上).请你根据他们测量数据计算这棵树CD的高度(结果精确到0.1m).(参考数据:≈1.414,≈1.732)
二次函数y=a的图象如图所示,
则一次函数y=bx+与反比例函数y=在同一坐标系内的图象大致为( )
下列运算正确的是( )
A. B.C.aD.
(9分)在一个黑色的布口袋里装着白、红两种颜色的小球,它们除了颜色之外没有其它区别,其中白球2个、红球1个,球在袋中进行搅匀.
(1)若随机地从袋中摸出1个球,则摸出红球的概率是多少?
(2)随机地从袋中摸出1个球,放回搅匀再摸出第二个球.请你用画树状图或列表的方法表示所有等可能的结果,并求两次都摸出白球的概率.
如图是五个相同的正方体组成的一个几何体,则其俯视图是( )
等腰△ABC的顶角为x°,底角为y°,则y与x的关系式为 .