题目内容
若两圆的半径分别为5和2,圆心距是4.则这两圆的位置关系是( )
A.外离 B.外切 C.相交 D.内切
计算:tan60°+2sin45°﹣2cos30°的结果是( )
A.2 B. C. D.1
关于x的方程(a﹣6)x2﹣8x+6=0有实数根,则整数a的最大值是( ).
A.6 B.7 C.8 D.9
(1)计算:
(2)解分式方程:.
如图,点A、B分别在射线OM、ON上,C、D分别是线段OA和OB上的点,以OC、OD为邻边作平行四边形OCED,下面给出三种作法的条件:①取OC=OA、OD=OB; ②取OC=OA、OD=OB;③取OC=OA、OD=OB.能使点E落在阴影区域内的作法有( )
A.① B.①② C.①②③ D.②③
如图1,将一个直角三角板的直角顶点P放在正方形ABCD的对角线BD上滑动,并使其一条直角边始终经过点A,另一条直角边与BC相交于点E.
(1)求证:PA=PE;
(2)若将(1)中的正方形变为矩形,其余条件不变(如图2),且AD=10,DC=8,求AP:PE;
(3)在(2)的条件下,当P滑动到BD的延长线上时(如图3),请你直接写出AP:PE的比值.
【答案】(1)证明见解析;(2)AP:PE=5:4;(3)AP:PE=5:4;
【解析】
试题分析:(1)过P作PM⊥AB于M,PN⊥BC于N,四边形BMPN是正方形,得出PM=PN,∠MPN=90°,求出∠APM=∠NPE,∠AMP=∠PNE,证△APM≌△EPN,推出AP=PE即可;
(2)证△BPM∽△BDA,△BNP∽△BCD,得出,,推出,求出,证△APM∽△EPN,推出即可;
(3)过P作PM⊥AB于M,PN⊥BC于N,证△BPM∽△BDA,△BNP∽△BCD,得出,,推出,求出,证△APM∽△EPN,推出即可.
试题解析:(1)证明:过P作PM⊥AB于M,PN⊥BC于N,
∵四边形ABCD是正方形,
∴∠ABD=45°,
∴∠MPB=45°=∠ABD,
∴PM=BM,
同理BP=BN,
∴∠ABC=90°=∠BMP=∠BNP,
∴四边形BMPN是正方形,
∴PM=PN,∠MPN=90°,
∵∠APE=90°,
∴都减去∠MPE得:∠APM=∠NPE,
∵PM⊥AB,PN⊥BC,
∴∠AMP=∠PNE,
在△APM和△EPN中
∴△APM≌△EPN(ASA),
∴AP=PE;
(2)【解析】∵四边形ABCD是矩形,
∴∠BAD=∠C=90°,
∵∠PMB=PNB=90°,
∴PM∥AD,PN∥CD,
∴△BPM∽△BDA,△BNP∽△BCD,
∴,,,
∴,
∵∠AMP=∠ENP=90°,∠MPA=∠EPN,
∴△APM∽△EPN,
∴=,
AP:PE=5:4;
(3)【解析】AP:PE=5:4.
考点:相似形综合题.
【题型】解答题【适用】一般【标题】2015届山东省威海市乳山市中考一模数学试卷(带解析)【关键字标签】【结束】
如图,直线y=-x+2与x轴交于点B,与y轴交于点C,已知二次函数的图象经过点B,C和点A(-1,0).
(1)求B,C两点坐标;
(2)求该二次函数的关系式;
(3)若抛物线的对称轴与x轴的交点为点D,点E是线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标;
(4)在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明问题.
在直角坐标系xOy中,对于点P(x,y),我们把点P′(y+1,-x+1)叫做点P的影子点.已知点A1的影子点为A2,点A2的影子点为A3,点A3的影子点为A4,…,这样依次得到点A1,A2,A3,…,An,…若点A1的坐标为(a,b),对于任意的正整数n,点An均在y轴的右侧,则a,b应满足的条件是 .
计算(-)-1=( )
A.- B. C.-2 D.2
已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列结论:
①b2-4ac>0;②abc>0;③8a+c>0;④9a+3b+c<0
其中,正确结论的个数是( )
A.1 B.2 C.3 D.4