题目内容

如图,M为线段AB的中点,AE与BD交于点C,∠DME=∠A=∠B,且DM交AC于F,ME交BC于G,写出图中两对相似三角形,并证明其中的一对.
考点:相似三角形的判定
专题:
分析:根据三角形的外角性质求出∠AFM=∠BMG,再根据相似三角形的判定推出即可.
解答:答:△AMF∽△BGM,△DMG∽△DBM,△EMF∽△EAM,
证明:∵∠DME=∠A=∠B,
∴∠AFM=∠DME+∠E=∠A+∠E=∠BMG,∠A=∠B,
∴△AMF∽△BGM.
点评:本题考查了相似三角形的判定和三角形外角性质的应用,主要考查学生运用定理进行推理的能力,用到的知识点是有两角相等的两个三角形相似,难度适中.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网