题目内容
如图直线l1:y=x﹣1与l2:y=ax+b的交点在y轴上,则不等式的解集为( )
A. 无解 B. x>﹣1 C. 0<x<1 D. ﹣2<x<1
如图1,在平面直角坐标系中,直线与轴、轴分别交于点、,点为轴负半轴上一点, 于点交轴于点.已知抛物线经过点、、.
()求抛物线的函数式.
()连接,点在线段上方的抛物线上,连接、,若和面积满足,求点的坐标.
()如图, 为中点,设为线段上一点(不含端点),连接.一动点从出发,沿线段以每秒个单位的速度运动到,再沿着线段以每秒个单位的速度运动到后停止.若点在整个运动过程中用时最少,请直接写出最少时间和此时点的坐标.
将x4+8分解因式正确的是( )
A. (x4?16) B. (x2+4)(x2?4)
C. (x2+4)(x+2)(x?2) D. (x2+2)(x2?2)2
在同一直角坐标系内分别作出一次函数y=x+1和y=2x﹣2的图象,则下面的说法:
①函数y=2x﹣2的图象与y轴的交点是(﹣2,0);
②方程组 的解是;
③函数y=x+1和y=2x﹣2的图象交点的坐标为(﹣2,2);
④两直线与y轴所围成的三角形的面积为3.
其中正确的有___.(填序号)
将点A(3,2)沿x轴向左平移4个单位长度得到点A′,点A′关于y轴对称的点的坐标是( )
A. (﹣3,2) B. (﹣1,2) C. (1,2) D. (1,﹣2)
某公司准备投资开发A、B两种新产品,信息部通过调研得到两条信息:
信息一:如果投资A种产品,所获利润(万元)与投资金额x(万元)之间满足正比例函数关系: ;
信息二:如果投资B种产品,所获利润(万元)与投资金额x(万元)之间满足二次函数关系: ;
根据公司信息部报告, 、(万元)与投资金额x(万元)的部分对应值如下表所示:
(1)填空: = ; = ;
(2)如果公司准备投资20万元同时开发A、B两种新产品,设公司所获得的总利润为W(万元),B种产品的投资金额为x(万元),则A种产品的投资金额为_________万元,并求出W与x之间的函数关系式;
(3)请你设计一个在(2)中公司能获得最大总利润的投资方案.
(1)计算: ;(2)化简:
一元二次方程的解为( )
A. B. C. 且 D. 或
如图,AB为的切线,切点为B,连接AO,AO与交于点C,BD为的直径,
连接CD.若∠A=30°,的半径为2,则图中阴影部分的面积为_______.