题目内容

某工厂生产的某种产品按质量分为10个档次,据调查显示,每个档次的日产量及相应的单件利润如表所示(其中x为正整数,且1≤x≤10);
 质量档次 1 2 x 10
 日产量(件) 95 90 100-5x 50
 单件利润(万元) 6 8 2x+4 24
为了便于调控,此工厂每天只生产一个档次的产品,当生产质量档次为x的产品时,当天的利润为y万元.
(1)求y关于x的函数关系式;
(2)工厂为获得最大利润,应选择生产哪个档次的产品?并求出当天利润的最大值.
考点:二次函数的应用
专题:
分析:(1)根据总利润=单件利润×销售量就可以得出y与x之间的函数关系式;
(2)由(1)的解析式转化为顶点式,由二次函数的性质就可以求出结论.
解答:解:(1)由题意,得
y=(100-5x)(2x+4),
y=-10x2+180x+400(1≤x≤10的整数);
答:y关于x的函数关系式为y=-10x2+180x+400;
(2)∵y=-10x2+180x+400,
∴y=-10(x-9)2+1210.
∵1≤x≤10的整数,
∴x=9时,y最大=1210.
答:工厂为获得最大利润,应选择生产9档次的产品,当天利润的最大值为1210万元.
点评:本题考查了总利润=单件利润×销售量的运用,二次函数的解析式的运用,顶点式的运用,解答时求出函数的解析式是关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网