题目内容

如图,⊙O的直径AC=13,弦BC=12.过点A作直线MN,使∠BAM=
1
2
∠AOB.
(1)求证:MN是⊙O的切线;
(2)延长CB交MN于点D,求AD的长.
(1)证明:∵AC是直径,
∴∠ABC=90°,∠C+∠BAC=90°.
∵∠BAM=
1
2
∠AOB=∠C,
∴∠BAM+∠BAC=90°,即∠CAM=90°.
∴MN是⊙O的切线.

(2)∵∠ABC=90°,AC=13,BC=12,
∴AB=5.
∵tanC=
AB
BC
=
AD
AC

5
12
=
AD
13

∴AD=
65
12
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网